code example
DCMF IBM Deep Computing Messaging Framework
one-sided communication
POSIX threads
OpenCL Open Computing Language
GPU computing

#include <string.h>
#include <dcmf.h>
#include <dcmf_globalcollectives.h>
#include <pthread.h>
#include <cl.h>
#include <malloc.h>

float *x, *y;
#define PROC (8)
float e_vec[PROC];
int n_thread0, n_thread1;
DCMF_Protocol_t barrier_prot, control0_prot, control1_prot,
  put_prot, reduce_prot;

void cb_decr(void *data) {
  unsigned *val = (unsigned*)data;
  (*val)--;
}

void cb_recv(void *data, const DCMF_Control_t *info, unsigned) {
  memcpy((DCMF_Memregion_t*)data, info, sizeof(DCMF_Memregion_t));
}

void barrier() {
  DCMF_CriticalSection_enter(0);
  volatile unsigned active = 1;
  DCMF_Callback_t cb = { cb_decr, (void *) &active };
  DCMF_Request_t req;
  DCMF_GlobalBarrier(&barrier_prot, &req, cb);
  while (active)
   DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
}

// kernel
#define BLOCK (512)
const char *source =
"__kernel void sub1(__global float* fx,\
    __global const float* fy,\
    __local float* se, __global float* fe) {\
  const unsigned int t = get_global_id(0);\
  const unsigned int b = get_group_id(0);\
  const unsigned block = 512;\
  const unsigned int i = block*b+t;\
  float e;\
  /* do computation */\
  fx[t] += ( fy[t+2] + fy[t] )*.5;\
  e = fy[t+1] * fy[t+1];\
  /* reduction */\
  se[t] = e;\
  barrier(CLK_LOCAL_MEM_FENCE);\
  if (t<256) {\
   se[t] += se[t+256];\
   barrier(CLK_LOCAL_MEM_FENCE);\
  }\
  if (t<128) {\
   se[t] += se[t+128];\
   barrier(CLK_LOCAL_MEM_FENCE);\
  }\
  if (t<64) {\
   se[t] += se[t+64];\
   barrier(CLK_LOCAL_MEM_FENCE);\
  }\
  if (t<32) {\
   se[t] += se[t+32];\
   se[t] += se[t+16];\
   se[t] += se[t+8];\
   se[t] += se[t+4];\
   se[t] += se[t+2];\
   se[t] += se[t+1];\
  }\
  if (t==0)\
   fe[b] = se[0];\
}";

void *thread1(void *arg) {
  int p = (int)arg;
  int n0 = n_thread0 + (p * (n_thread1-n_thread0)) / PROC;
  int n1 = n_thread0 + ((p+1) * (n_thread1-n_thread0)) / PROC;
  // allocate GPU
  cl_context ct = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, 0, 0, 0);
  size_t ctsize;
  clGetContextInfo(ct, CL_CONTEXT_DEVICES, 0, 0, &ctsize);
  cl_device_id *aDevices = (cl_device_id*)malloc(ctsize);
  clGetContextInfo(ct, CL_CONTEXT_DEVICES, ctsize, aDevices, 0);
  // compile kernel
  cl_program prog = clCreateProgramWithSource(ct, 1, &source, 0, 0);
  clBuildProgram(prog, 0, 0, 0, 0, 0);
  cl_kernel kern = clCreateKernel(prog, "sub1", 0);
  float e = 0;
  // pick GPU
  cl_command_queue queue = clCreateCommandQueue(ct, aDevices[p], 0, 0);
  // allocate GPU memory
  cl_mem fx = clCreateBuffer(ct, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
  (n1-n0)*sizeof(cl_float), &x[n0], 0);
  cl_mem fy = clCreateBuffer(ct, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
  (n1-n0+2)*sizeof(cl_float), &y[n0-1], 0);
  cl_mem se = clCreateBuffer(ct, CL_MEM_READ_WRITE,
  BLOCK*sizeof(cl_float), 0, 0);
  cl_mem fe = clCreateBuffer(ct, CL_MEM_WRITE_ONLY,
  (n1-n0)/BLOCK*sizeof(cl_float), 0, 0);
  clSetKernelArg(kern, 0, sizeof(cl_mem), (void *)&fx);
  clSetKernelArg(kern, 1, sizeof(cl_mem), (void *)&fx);
  clSetKernelArg(kern, 2, sizeof(cl_mem), (void *)&se);
  clSetKernelArg(kern, 3, sizeof(cl_mem), (void *)&fe);
  float *d = new float[(n1-n0)/BLOCK];
  // call GPU
  const unsigned int size = BLOCK;
  const unsigned int dim = n1-n0+2;
  clEnqueueNDRangeKernel(queue, kern, 1, 0, &dim, &size, 0, 0, 0);
  // copy to host memory
  clEnqueueReadBuffer(queue, fx, CL_TRUE, 0,
  (n1-n0) * sizeof(cl_float), &x[n0], 0, 0, 0);
  clEnqueueReadBuffer(queue, fe, CL_TRUE, 0,
  (n1-n0) * sizeof(cl_float), d, 0, 0, 0);
  float ee = 0;
  for (int i=0; i<(n1-n0)/BLOCK; ++i)
   ee += d[i];
  e += ee;
  delete[] d;
  // release GPU memory
  clReleaseMemObject(fx);
  clReleaseMemObject(fy);
  clReleaseMemObject(se);
  clReleaseMemObject(fe);
  e_vec[p] = e;
  return (void*) 0;
}

int main(int argc, char *argv[]) {
  int n = ...;
  DCMF_Messager_initialize();
  { // init barrier, put, reduce
   DCMF_GlobalBarrier_Configuration_t barrier_conf =
    {DCMF_DEFAULT_GLOBALBARRIER_PROTOCOL};
   DCMF_Put_Configuration_t put_conf =
    {DCMF_DEFAULT_PUT_PROTOCOL};
   DCMF_GlobalAllreduce_Configuration_t reduce_conf =
    {DCMF_TREE_GLOBALALLREDUCE_PROTOCOL};
   DCMF_CriticalSection_enter(0);
   DCMF_GlobalBarrier_register(&barrier_prot, &barrier_conf);
   DCMF_Put_register(&put_prot, &put_conf);
   DCMF_GlobalAllreduce_register(&reduce_prot, &reduce_conf);
   DCMF_CriticalSection_exit(0);
  }
  unsigned me = DCMF_Messager_rank();
  unsigned numproc = DCMF_Messager_size();
  int p_left = -1, p_right = -1;
  if (me > 0)
   p_left = me-1;
  if (me < numproc-1)
   p_right = me+1;
  int n_local0 = 1 + (me * (n-1)) / numproc;
  int n_local1 = 1 + ((me+1) * (n-1)) / numproc;
  // allocate only local part + ghost zone of the arrays x,y
  float *x, *y;
  x = new float[n_local1 - n_local0 + 2];
  y = new float[n_local1 - n_local0 + 2];
  x -= (n_local0 - 1);
  y -= (n_local0 - 1);
  // ghost zones
  DCMF_Memregion_t memregion0, memregion1,
   memregion_left, memregion_right;
  size_t bytes;
  DCMF_CriticalSection_enter(0);
  DCMF_Memregion_create(&memregion0, &bytes,
   2 * sizeof(float), &y[n_local0-1], 0);
  DCMF_Memregion_create(&memregion1, &bytes,
   2 * sizeof(float), &y[n_local1-1], 0);
  // set memregion_left, memregion_right
  DCMF_Control_Configuration_t c0_conf =
   { DCMF_DEFAULT_CONTROL_PROTOCOL, cb_recv, &memregion_right};
  DCMF_Control_Configuration_t c1_conf =
   { DCMF_DEFAULT_CONTROL_PROTOCOL, cb_recv, &memregion_left};
  DCMF_Control_register(&control0_prot, &c0_conf);
  DCMF_Control_register(&control1_prot, &c1_conf);
  barrier();
  if (p_left != -1)
   DCMF_Control(&control0_prot, DCMF_MATCH_CONSISTENCY,
    p_left, (DCMF_Control_t*) &memregion0);
  if (p_right != -1)
   DCMF_Control(&control1_prot, DCMF_MATCH_CONSISTENCY,
    p_right, (DCMF_Control_t*) &memregion1);
  barrier();
  DCMF_CriticalSection_exit(0);

  ... // fill x, y

  { // fill ghost zone
  volatile unsigned active0 = 1, active1 = 1;
  DCMF_Callback_t cb0 = { cb_decr, (void*)&active0 },
   cb1 = { cb_decr, (void*)&active1 };
  DCMF_Request_t req0, req1;
  DCMF_CriticalSection_enter(0);
  if (p_left != -1)
   DCMF_Put(&put_prot, &req0, cb0, DCMF_SEQUENTIAL_CONSISTENCY,
    p_left, sizeof(float), &memregion0, &memregion_left,
    sizeof(float), sizeof(float));
  if (p_right != -1)
   DCMF_Put(&put_prot, &req1, cb1, DCMF_SEQUENTIAL_CONSISTENCY,
    p_right, sizeof(float), &memregion1, &memregion_right,
    sizeof(float), 0);
  if (p_left != -1)
   while (active0)
    DCMF_Messager_advance();
  if (p_right != -1)
   while (active1)
    DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
  barrier();
  }

  pthread_t threads[PROC];
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  n_thread0 = n_local0;
  n_thread1 = n_local1;
  float e = 0;
  // start threads and wait for termination
  for (int p=0; p<PROC; ++p)
   pthread_create(&threads[p], &attr, thread1, (void *)p);
  for (int p=0; p<PROC; ++p) {
   pthread_join(threads[p], NULL);
   e += e_vec[p];
  }

  { // reduction
  DCMF_CriticalSection_enter(0);
  float e_local = e;
  volatile unsigned active = 1;
  DCMF_Callback_t cb = { cb_decr, (void*)&active };
  DCMF_Request_t req;
  DCMF_GlobalAllreduce(&reduce_prot, &req, cb,
   DCMF_MATCH_CONSISTENCY, -1,
   (char*)&e_local, (char*)&e, 1, DCMF_FLOAT, DCMF_SUM);
  while (active)
   DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
  }

  ... // output x, e

  barrier();
  DCMF_Memregion_destroy(&memregion0);
  DCMF_Memregion_destroy(&memregion1);
  x += (n_local0 - 1);
  y += (n_local0 - 1);
  delete[] x, y;
  DCMF_Messager_finalize();
  return 0;
}

[start] [references] [download] [install]