code example
DCMF IBM Deep Computing Messaging Framework
one-sided communication
Cuda nVidia Computer Unified Device Architecture
GPU computing

#include <string.h>
#include <dcmf.h>
#include <dcmf_globalcollectives.h>
#include <cuda.h>

DCMF_Protocol_t barrier_prot, control0_prot, control1_prot,
  put_prot, reduce_prot;

void cb_decr(void *data) {
  unsigned *val = (unsigned*)data;
  (*val)--;
}

void cb_recv(void *data, const DCMF_Control_t *info, unsigned) {
  memcpy((DCMF_Memregion_t*)data, info, sizeof(DCMF_Memregion_t));
}

void barrier() {
  DCMF_CriticalSection_enter(0);
  volatile unsigned active = 1;
  DCMF_Callback_t cb = { cb_decr, (void *) &active };
  DCMF_Request_t req;
  DCMF_GlobalBarrier(&barrier_prot, &req, cb);
  while (active)
   DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
}

// kernel
__global__ void sub1(float* fx, float* fy, float* fe) {
#define BLOCK (512)
  int t = threadIdx.x; // builtin
  int b = blockIdx.x; // builtin
  float e;
  __shared__ float se[BLOCK];
  __shared__ float sx[BLOCK];
  __shared__ float sy[BLOCK+2];
  // copy from device to processor memory
  sx[t] = fx[BLOCK*b+t];
  sy[t] = fy[BLOCK*b+t];
  if (t<2)
     sy[t+BLOCK] = fy[BLOCK*b+t+BLOCK];
  __syncthreads();

  // do computation
  sx[t] += ( sy[t+2] + sy[t] )*.5;
  e = sy[t+1] * sy[t+1];
  // copy to device memory
  fx[BLOCK*b+t] = sx[t];
  // reduction
  se[t] = e;
  __syncthreads();
  if (t<256) {
     se[t] += se[t+256];
     __syncthreads();
  }
  if (t<128) {
     se[t] += se[t+128];
     __syncthreads();
  }
  if (t<64) {
     se[t] += se[t+64];
     __syncthreads();
  }
  if (t<32) { // warp size
     se[t] += se[t+32];
     se[t] += se[t+16];
     se[t] += se[t+8];
     se[t] += se[t+4];
     se[t] += se[t+2];
     se[t] += se[t+1];
  }
  if (t==0)
     fe[b] = se[0];
}

int main(int argc, char *argv[]) {
  int n = ...;
  DCMF_Messager_initialize();
  { // init barrier, put, reduce
   DCMF_GlobalBarrier_Configuration_t barrier_conf =
    {DCMF_DEFAULT_GLOBALBARRIER_PROTOCOL};
   DCMF_Put_Configuration_t put_conf =
    {DCMF_DEFAULT_PUT_PROTOCOL};
   DCMF_GlobalAllreduce_Configuration_t reduce_conf =
    {DCMF_TREE_GLOBALALLREDUCE_PROTOCOL};
   DCMF_CriticalSection_enter(0);
   DCMF_GlobalBarrier_register(&barrier_prot, &barrier_conf);
   DCMF_Put_register(&put_prot, &put_conf);
   DCMF_GlobalAllreduce_register(&reduce_prot, &reduce_conf);
   DCMF_CriticalSection_exit(0);
  }
  unsigned me = DCMF_Messager_rank();
  unsigned numproc = DCMF_Messager_size();
  int p_left = -1, p_right = -1;
  if (me > 0)
   p_left = me-1;
  if (me < numproc-1)
   p_right = me+1;
  int n_local0 = 1 + (me * (n-1)) / numproc;
  int n_local1 = 1 + ((me+1) * (n-1)) / numproc;
  // allocate only local part + ghost zone of the arrays x,y
  float *x, *y;
  x = new float[n_local1 - n_local0 + 2];
  y = new float[n_local1 - n_local0 + 2];
  x -= (n_local0 - 1);
  y -= (n_local0 - 1);
  // ghost zones
  DCMF_Memregion_t memregion0, memregion1,
   memregion_left, memregion_right;
  size_t bytes;
  DCMF_CriticalSection_enter(0);
  DCMF_Memregion_create(&memregion0, &bytes,
   2 * sizeof(float), &y[n_local0-1], 0);
  DCMF_Memregion_create(&memregion1, &bytes,
   2 * sizeof(float), &y[n_local1-1], 0);
  // set memregion_left, memregion_right
  DCMF_Control_Configuration_t c0_conf =
   { DCMF_DEFAULT_CONTROL_PROTOCOL, cb_recv, &memregion_right};
  DCMF_Control_Configuration_t c1_conf =
   { DCMF_DEFAULT_CONTROL_PROTOCOL, cb_recv, &memregion_left};
  DCMF_Control_register(&control0_prot, &c0_conf);
  DCMF_Control_register(&control1_prot, &c1_conf);
  barrier();
  if (p_left != -1)
   DCMF_Control(&control0_prot, DCMF_MATCH_CONSISTENCY,
    p_left, (DCMF_Control_t*) &memregion0);
  if (p_right != -1)
   DCMF_Control(&control1_prot, DCMF_MATCH_CONSISTENCY,
    p_right, (DCMF_Control_t*) &memregion1);
  barrier();
  DCMF_CriticalSection_exit(0);

  ... // fill x, y

  { // fill ghost zone
  volatile unsigned active0 = 1, active1 = 1;
  DCMF_Callback_t cb0 = { cb_decr, (void*)&active0 },
   cb1 = { cb_decr, (void*)&active1 };
  DCMF_Request_t req0, req1;
  DCMF_CriticalSection_enter(0);
  if (p_left != -1)
   DCMF_Put(&put_prot, &req0, cb0, DCMF_SEQUENTIAL_CONSISTENCY,
    p_left, sizeof(float), &memregion0, &memregion_left,
    sizeof(float), sizeof(float));
  if (p_right != -1)
   DCMF_Put(&put_prot, &req1, cb1, DCMF_SEQUENTIAL_CONSISTENCY,
    p_right, sizeof(float), &memregion1, &memregion_right,
    sizeof(float), 0);
  if (p_left != -1)
   while (active0)
    DCMF_Messager_advance();
  if (p_right != -1)
   while (active1)
    DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
  barrier();
  }

  // allocate GPU memory
  float *fx, *fy, *fe;
  cudaMalloc((void**)&fx, (n_local1-n_local0+2) * sizeof(float));
  cudaMalloc((void**)&fy, (n_local1-n_local0+2) * sizeof(float));
  cudaMalloc((void**)&fe, (n_local1-n_local0+2)/BLOCK * sizeof(float));
  float *de = new float[(n_local1-n_local0+2)/BLOCK];
  // copy to GPU memory
  cudaMemcpy(fx+1, &x[n_local0],
   (n_local1-n_local0) * sizeof(float), cudaMemcpyHostToDevice);
  cudaMemcpy(fy, &y[n_local0-1],
   (n_local1-n_local0+2) * sizeof(float), cudaMemcpyHostToDevice);
  dim3 dimBlock(BLOCK, 1, 1);
  dim3 dimGrid((n_local1-n_local0+2)/BLOCK, 1, 1);

  float e = 0;
  // call GPU
  sub1<<<dimGrid, dimBlock>>>(fx, fy, fe);
  // copy to host memory
  cudaMemcpy(fx+1, &x[n_local0], (n_local1-n_local0) * sizeof(float),
   cudaMemcpyDeviceToHost);
  cudaMemcpy(fe, &de[n_local0-1], (n_local1-n_local0+2)/BLOCK * sizeof(float),
   cudaMemcpyDeviceToHost);
  // release GPU memory
  cudaFree(fe);
  cudaFree(fy);
  cudaFree(fx);
  float e_local = 0;
  for (int i=0; i<(n_local1-n_local0+2)/BLOCK; ++i)
   e_local += de[i];
  e += e_local;
  delete[] de;

  { // reduction
  DCMF_CriticalSection_enter(0);
  float e_local = e;
  volatile unsigned active = 1;
  DCMF_Callback_t cb = { cb_decr, (void*)&active };
  DCMF_Request_t req;
  DCMF_GlobalAllreduce(&reduce_prot, &req, cb,
   DCMF_MATCH_CONSISTENCY, -1,
   (char*)&e_local, (char*)&e, 1, DCMF_FLOAT, DCMF_SUM);
  while (active)
   DCMF_Messager_advance();
  DCMF_CriticalSection_exit(0);
  }

  ... // output x, e

  barrier();
  DCMF_Memregion_destroy(&memregion0);
  DCMF_Memregion_destroy(&memregion1);
  x += (n_local0 - 1);
  y += (n_local0 - 1);
  delete[] x, y;
  DCMF_Messager_finalize();
  return 0;
}

[start] [references] [download] [install]