#include <mpp/shmem.h>
#include <cuda.h>
// kernel
__global__ void sub1(float* fx, float* fy, float* fe) {
#define BLOCK (512)
int t = threadIdx.x; // builtin
int b = blockIdx.x; // builtin
float e;
__shared__ float se[BLOCK];
__shared__ float sx[BLOCK];
__shared__ float sy[BLOCK+2];
// copy from device to processor memory
sx[t] = fx[BLOCK*b+t];
sy[t] = fy[BLOCK*b+t];
if (t<2)
sy[t+BLOCK] = fy[BLOCK*b+t+BLOCK];
__syncthreads();
// do computation
sx[t] += ( sy[t+2] + sy[t] )*.5;
e = sy[t+1] * sy[t+1];
// copy to device memory
fx[BLOCK*b+t] = sx[t];
// reduction
se[t] = e;
__syncthreads();
if (t<256) {
se[t] += se[t+256];
__syncthreads();
}
if (t<128) {
se[t] += se[t+128];
__syncthreads();
}
if (t<64) {
se[t] += se[t+64];
__syncthreads();
}
if (t<32) { // warp size
se[t] += se[t+32];
se[t] += se[t+16];
se[t] += se[t+8];
se[t] += se[t+4];
se[t] += se[t+2];
se[t] += se[t+1];
}
if (t==0)
fe[b] = se[0];
}
int main(int argc, char *argv[]) {
int n = ...;
start_pes(0);
int nn = (n-1) / _num_pes();
int n_local0 = 1 + _my_pe() * nn;
int n_local1 = 1 + (_my_pe()+1) * nn;
// allocate only local part + ghost zone of the arrays x,y
float *x, *y;
x = (float*)shmalloc((n_local1 - n_local0 + 2)*sizeof(float));
y = (float*)shmalloc((n_local1 - n_local0 + 2)*sizeof(float));
x -= (n_local0 - 1);
y -= (n_local0 - 1);
shmem_barrier_all();
... // fill x, y
// fill ghost zone
if (_my_pe() > 0)
shmem_float_put(&y[n_local1], &y[n_local0], 1, _my_pe()-1);
if (_my_pe() < _num_pes()-1)
shmem_float_put(&y[n_local0-1], &y[n_local1-1], 1, _my_pe()+1);
shmem_barrier_all();
// allocate GPU memory
float *fx, *fy, *fe;
cudaMalloc((void**)&fx, (n_local1-n_local0+2) * sizeof(float));
cudaMalloc((void**)&fy, (n_local1-n_local0+2) * sizeof(float));
cudaMalloc((void**)&fe, (n_local1-n_local0+2)/BLOCK * sizeof(float));
float *de = new float[(n_local1-n_local0+2)/BLOCK];
// copy to GPU memory
cudaMemcpy(fx+1, &x[n_local0],
(n_local1-n_local0) * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(fy, &y[n_local0-1],
(n_local1-n_local0+2) * sizeof(float), cudaMemcpyHostToDevice);
dim3 dimBlock(BLOCK, 1, 1);
dim3 dimGrid((n_local1-n_local0+2)/BLOCK, 1, 1);
float e = 0;
// call GPU
sub1<<<dimGrid, dimBlock>>>(fx, fy, fe);
// copy to host memory
cudaMemcpy(fx+1, &x[n_local0], (n_local1-n_local0) * sizeof(float),
cudaMemcpyDeviceToHost);
cudaMemcpy(fe, &de[n_local0-1], (n_local1-n_local0+2)/BLOCK * sizeof(float),
cudaMemcpyDeviceToHost);
// release GPU memory
cudaFree(fe);
cudaFree(fy);
cudaFree(fx);
float e_local = 0;
for (int i=0; i<(n_local1-n_local0+2)/BLOCK; ++i)
e_local += de[i];
e += e_local;
delete[] de;
static float work[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static long sync[_SHMEM_REDUCE_MIN_WRKDATA_SIZE];
static float el, es;
el = e;
shmem_float_sum_to_all(&es, &el, 1,
0, 0, _num_pes(), work, sync);
e = es;
... // output x, e
x += (n_local0 - 1);
y += (n_local0 - 1);
shfree(x);
shfree(y);
return 0;
}
|